
12/20/21

1

1

SOICT
School of Information and Communication Technology

2

12/20/21

2

IT3180 – Introduction to Software
Engineering
16 – Verification and Testing

3

3

Testing

• A software test executes a program to determine whether a property of
the program holds or doesn’t hold
• A test passes [fails] if the property holds [doesn’t hold] on that run

• “[T]he means by which the presence, quality, or genuineness of anything is
determined; a means of trial.” –dictionary.com

4

4

dictionary.com

12/20/21

3

Software Quality Assurance

• Static analysis (assessing code without executing it)
• Proofs of correctness (theorems about program properties)
• Code reviews (people reviewing others’ code)
• Software process (placing structure on the development lifecycle)
• …and many more ways to find problems and to increase confidence

5

5

V Model – Different levels of Test

• Unit test: ONE module at a time
• Integration test: The linking modules
• System test: The whole (entire) system
• Acceptance test: test from the user point of view

6

6

12/20/21

4

Test Levels – Unit Testing

• Unit Testing: Does each unit (class, method, etc.) do what it supposed
to do?
• Smallest programming units
• Approaches: Black box and white box testing
• Techniques, Tools

7

7

Test Levels – Integration Testing

• Integration Testing: do you get the expected results when the parts are
put together?
• Approaches: Bottom-up, top-down testing

• Acceptance Testing: does it match to user needs?

8

8

12/20/21

5

Test Levels – System Testing

• System Testing: does it work within the overall system?
• Approaches: Black box testing

9

9

Terms

10

10

12/20/21

6

Terms (2)

• Test case
• a set of conditions/variables to determine whether a system under

test satisfies requirements or works correctly
• Test suite
• a collection of test cases related to the same test work

• Test plan
• a document which describes testing approach and methodologies

being used for testing the project, risks, scope of testing, specific
tools

11

11

Test suite

• Example of test suite
• Test case 1: Login
• Test case 2: Add New Products
• Test case 3: Checkout
• Test case 4: Logout

12

12

12/20/21

7

Integration Testing (1)

Examine the interface between modules as well as the input and output
• Stub/Driver:

• A program that simulates functions of a lower-level/upper-level module

13

13

Integration Testing (2) – Top-down Approach

• Defects based on misunderstanding of specification can be detected
early
• Effective in newly developed systems
• Need test stubs (can be simply

returning a value)

14

14

12/20/21

8

Integration Testing (2) – Bottom-up Approach

• Lower modules are independent => test independently and on a
parallel
• Effective in developing systems by modifying existing systems
• Need test drivers (more complex with controlling)

15

15

Other integration test techniques

• Big-bang test
• Wherein all the modules that have completed the unit tests are linked all

at once and tested
• Reducing the number of testing procedures in small-scale program; but

not easy to locate errors
• Sandwich test

• Where lower-level modules are tested bottom-up and higher-level
modules are tested top-down

16

16

12/20/21

9

Regression test

“When you fix one bug, you introduce several new bugs”
• Re-testing an application after its code has been modified to verify that

it still functions correctly
• Re-running existing test cases
• Checking that code changes did not break any previously working functions

(side-effect)
• Run as often as possible
• With an automated regression testing tool

17

17

Test-case Design Techniques

18

Black box
Must choose inputs without

knowledge of the
implementation

A. Choose input data (“test inputs”)
B. Define the expected outcome (“soict”)
C. Run the unit (“SUT” or “software under test”) on the input and

record the results
D. Examine results against the expected outcome (“soict”)

Specification
Precondition Postcondition

Implementation

White box
Can choose inputs with

knowledge of the
implementation

18

12/20/21

10

Black-box vs. White box

19

Black box
Must choose inputs without knowledge of the

implementation

• Has to focus on the
behavior of the SUT
• Needs an “soict”
• Or at least an
expectation of
whether or not an
exception is thrown

• Common use: coverage
• Basic idea: if your test

suite never causes a
statement to be executed,
then that statement might
be buggy

White box
Can choose inputs with knowledge of the

implementation

19

Unit & System Testing Techniques

For test case design
• Test Techniques for Black Box Test
• Equivalence Partitioning Analysis
• Boundary-value Analysis
• Decision Table
• Use Case-based Test

• Test Techniques for White Box Test
• Control Flow Test
• Data flow testing
• Predicate testing

20

20

12/20/21

11

White-box
Testing

21

21

Whitebox testing techniques

• Control Flow Testing
• All-paths testing
• Statement testing
• Branch testing

• Data Flow Testing
• All-defs coverage
• All-uses coverage

22

22

12/20/21

12

Control Flow Graph

• Represent the graphical structure of a program unit
• A sequence of statements from entry point to exit point of the unit

23

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

CFG symbols
4.3 CONTROL FLOW GRAPH 91

Decision point Merge pointSequential computation

True False
Computation Decision

Figure 4.2 Symbols in a CFG.

computation. A maximal sequential computation can be represented either by a
single rectangle or by many rectangles, each corresponding to one statement in the
source code.

We label each computation and decision box with a unique integer. The two
branches of a decision box are labeled with T and F to represent the true and false
evaluations, respectively, of the condition within the box. We will not label a merge
node, because one can easily identify the paths in a CFG even without explicitly
considering the merge nodes. Moreover, not mentioning the merge nodes in a path
will make a path description shorter.

We consider the openfiles() function shown in Figure 4.3 to illustrate the
process of drawing a CFG. The function has three statements: an assignment state-
ment int i = 0;, a conditional statement if(), and a return(i) statement. The reader
may note that irrespective of the evaluation of the if(), the function performs the
same action, namely, null. In Figure 4.4, we show a high-level representation of

FILE *fptr1, *fptr2, *fptr3; /* These are global variables. */

int openfiles(){
/*

This function tries to open files "file1", "file2", and
"file3" for read access, and returns the number of files
successfully opened. The file pointers of the opened files
are put in the global variables.

*/
int i = 0;
if(

(((fptr1 = fopen("file1", "r")) != NULL) && (i++)
&& (0)) ||

(((fptr2 = fopen("file2", "r")) != NULL) && (i++)
&& (0)) ||

(((fptr3 = fopen("file3", "r")) != NULL) && (i++))
);
return(i);

}

Figure 4.3 Function to open three files.

23

Control Flow Testing

• Main idea: select a few paths in a program unit and observe whether or
not the selected paths produce the expected outcome
• Executing a few paths while trying to assess the behavior of the entire

program unit

24

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

There are many possible paths!

loop < 20x

If-then-else

Selective Testing

White-Box Testing (Ch 4, 5)
Exhaustive Testing

520 (~1014) different paths

24

12/20/21

13

Outline of Control Flow Testing

25
Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

Work
process

90 CHAPTER 4 CONTROL FLOW TESTING

Select
paths

Draw a
control flow

graph

Path
selection
criteria

Test input
data

Generate
test input

data

Are
the selected

paths
feasible?

Program
unit

Control
flow graph

Selected
paths

Inputs

Output

Process of generating test input data

Yes

No

Figure 4.1 Process of generating test input data for control flow testing.

Selection of Paths : Paths are selected from the CFG to satisfy the path selec-
tion criteria, and it is done by considering the structure of the CFG.

Generation of Test Input Data: A path can be executed if and only if a
certain instance of the inputs to the program unit causes all the conditional
statements along the path to evaluate to true or false as dictated by the
control flow. Such a path is called a feasible path. Otherwise, the path is
said to be infeasible. It is essential to identify certain values of the inputs
from a given path for the path to execute.

Feasibility Test of a Path: The idea behind checking the feasibility of a
selected path is to meet the path selection criteria. If some chosen paths
are found to be infeasible, then new paths are selected to meet the criteria.

4.3 CONTROL FLOW GRAPH

A CFG is a graphical representation of a program unit. Three symbols are used
to construct a CFG, as shown in Figure 4.2. A rectangle represents a sequential

Fig 4.1

• Inputs
• Source code of unit
• Path selection criteria

• Generate CFG: draw
CFG from source code
of the unit
• Selection of paths:

selected paths to
satisfy path selection
criteria
• Generation of test

input data

25

Path selection criteria

• Example:
• Given the source code of the function AccClient
• Draw the CFG

26
Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

Life Insurance Example

bool AccClient(agetype
age; gndrtype gender)

bool accept
if(gender=female)

accept := age < 85;
else
accept := age < 80;

return accept

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3

4

5

7

6

26

12/20/21

14

All path coverage

• Objective: Design all possible test cases so that all paths of the
program are executed
• 4 test cases satisfy the all paths coverage criterion

27
Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

All paths
Female Age < 85 Age < 80
Yes Yes Yes
Yes Yes No
Yes No Yes
Yes No No
No Yes Yes
No Yes No
No No Yes
No No No

<Yes,Yes,*> 1-2(T)-3(T)-5-7
<Yes,No,No> 1-2(T)-3(F)-6-7
<No,Yes,Yes> 1-2(F)-4(T)-5-7
<No,*,No> 1-2(F)-4(F)-6-7

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3

4

5

7

6

27

Statement Coverage

•Main idea: Execute each statement at least once
• A possible concern may be:
• dead code

28

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

Statement Coverage

bool AccClient(agetype
age; gndrtype gender)

bool accept
if(gender=female)

accept := age < 85;
else
accept := age < 80;

return accept

AccClient(83, female)->accept
AccClient(83, male) ->reject

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3
4

5

7

6

28

12/20/21

15

Branch coverage

• Also called Decision Coverage
• A branch is an outgoing edge from a node
• A rectangle node has at most one out going branch
• All diamond nodes have 2 outgoint branches

• A decision element in a program may be one of
• If – then
• Switch – case
• Loop

• Main idea: selecting paths such that every branch is included in at least
one path

29

29

Example

30Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

AccClient(83,
female)->acceptBranch Coverage /1

bool AccClient(agetype
age; gndrtype gender)

bool accept
if(gender=female)

accept := age < 85;
else
accept := age < 80;

return accept

true

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3

4

5

7

6

30

12/20/21

16

Example

31Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

AccClient(83, male)
->rejectBranch Coverage /2

bool AccClient(agetype
age; gndrtype gender)

bool accept
if(gender=female)

accept := age < 85;
else
accept := age < 80;

return accept false

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3

4

5

7

6

31

Example

32Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

Branch Coverage /3

bool AccClient(agetype
age; gndrtype gender)

bool accept
if(gender=female)

accept := age < 85;
else
accept := age < 80;

return accept

true

true

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3

4

5

7

6

AccClient(78, male)-
>accept

32

12/20/21

17

Example

33
Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group

AccClient(88,
female) ->rejectBranch Coverage /4

bool AccClient(agetype
age; gndrtype gender)

bool accept
if(gender=female)

accept := age < 85;
else
accept := age < 80;

return accept

false

false

T Fif(female)

Return accept

Age, Gender

Age <85

Age <80T

FT
F

Accept = true Accept = false

1

2

3

4

5

7

6

33

Comparing 3 criteria

• (1) All path coverage: assure 100% paths executed
• (2) Statement coverage: pick enough paths to assure that every source

statement is executed at least once
• (3) Branch coverage: assure that every branch has been exercised at

least once under some test
• (1) implies (3), (3) implies (2)
• These 3 criteria are also called as Path Testing Techniques

34

34

12/20/21

18

Example 2: Exponential Function

35

35

Limitations of path testing

• Path Testing is applicable to new unit
• Limitations
• Interface mismatches and mistakes are not taken
• Not all initialization mistakes are caught by path testing
• Specification mistakes are not caught

36

36

12/20/21

19

Black-box
Testing

37

37

• Equivalence Partitioning
• Boundary Analysis
• Table Decision

38

Black-box Techniques

38

12/20/21

20

Equivalence Partitioning

• Create the encompassing test cases by analyzing the input data space
and dividing into equivalence classes
• Input condition space is partitioned into equivalence classes
• Every input taken from a equivalence class produces the same result

39

39

Example: Examination Judgment Program

• Program Title: “Examination Judgment Program”
• Subject: Two subjects as Mathematics, and Physics Judgment
• Specification:
• Passed if

• scores of both mathematics and physics are greater than or equal to 70 out of 100
or,

• average of mathematics and physics is greater than or equal to 80 out of 100
• Failed => Otherwise

40

40

12/20/21

21

Example: Examination Judgment Program (2)

• How many equivalent classes?

41

Score of
Math.

Score of
Physics.

100

100

60

60 70

70

20

20

40 80

40

80

0

(1)

(2)

(3)

(4)

(5)

(6)(7)

Average Score
is 80.

Average
Score
is 80.

Score Math. Physics Result
(1) 55 85 Failed
(2) 67 97 Passed
(3) 96 68 Passed
(4) 77 80 Passed
(5) 85 92 Passed
(6) 79 58 Failed
(7) 52 58 Failed

41

Equivalence Partitioning - Discussion

• What’s about invalid data of the input?

• (8) Math = -15, Physics = 120 Both score are invalid.
• (9) Math = 68, Physics = -66 Physics score is invalid.
• (10) Math = 118, Physics = 85 Math score is invalid.

42

42

12/20/21

22

Example: Examination Judgment Program (3)

43

Score of
Math.

Score of
Physics.

100

60

60 70

70

20

20

40 80

40

80

0

(1)

(2)

(3)

(4)

(5)

(6)(7)

Average Score
is 80.

Average
Score
is 80.

100

(8)

(9)

(10)

Some invalid data are added.

Score Math. Physics Result
(1) 55 85 Failed
(2) 67 97 Passed
(3) 96 68 Passed
(4) 77 80 Passed
(5) 85 92 Passed
(6) 79 58 Failed
(7) 52 58 Failed
(8) -15 120 Invalid
(9) 68 -66 Invalid
(10) 118 85 Invalid

43

Table Decision

• Relations between the conditions for and the contents of the
processing are expressed in the form of a table
• A decision table is a tabular form tool used when complex conditions

are combined
• Example: The conditions for creating reports from employee files

44

Under age 30 Y Y N N

Male Y N Y N

Married N Y Y N

Output Report 1 - X - -

Output Report 2 - - - X

Output Report 3 X - - -

Output Report 4 - - X -

44

12/20/21

23

Example: Examination Judgment Program (4)

• Condition1: Mathematics score=>70
• Condition2: Physics score=>70
• Condition3: Average of Mathematics, and Physics =>80
----------------- TC5------TC4------TC3------ TC6------TC2------TC1-------TCNG------------TC7
Condition1 True True True True False False False False
Condition2 True True False False True True False False
Condition3 True False True False True False True(none) False
--
-
“Passed” Yes Yes Yes --- Yes --- N/A --
“Failed” --- --- --- Yes --- Yes N/A Yes

45

45

Example: Examination Judgment Program (5)

• Invalid input data (integer)
• Condition4: Mathematics score = valid that means “0=< the score =< 100”
• Condition5: Physics score = valid that means “0=< the score =< 100”

--------------------------------TCI1----------TCI2--------TCI3----------TCI4--------
Condition4 Valid Invalid Valid. Invalid
Condition5 Valid Valid Invalid Invalid

“Normal results” Yes --- --- ---
“Error message math” --- Yes --- Yes
“Error message phys” --- --- Yes Yes

If both of mathematics score and physics score are invalid è Two messages are expected to be
output. Is it correct specifications?

46

46

12/20/21

24

Create Test case from Use case

• Identify all of the scenarios for the given use case
• Alternative scenarios should be drawn in a graph fo each action
• Create scenarios for
• a basic flow,
• one scenario covering each alternative flow,
• and some reasonable combinations of alternative flows

• Create infinite loops

47

47

Test case for UC “Login”

• “Thành công”
• Mã PIN đúng

• “Thất bại”
• Mã PIN sai và số lần sai < 3

• “Khoá tài khoản”
• Mã PIN sai và số lần sai >= 3

48

Mã PIN đúng Y Y N N
Số lần sai < 3 Y N Y N
“Thành công” x N/A - -
“Thất bại” - N/A x -
“Khoá tài khoản” - N/A - x

48

12/20/21

25

49

16 – Verification and Testing
(end of lecture)

49

